已知函数f(x)在R上为奇函数,当x≥0时,f(x)=x2+4x.(1)求f(x)的解析式,并写出f(x)的单调区间

已知函数f(x)在R上为奇函数,当x≥0时,f(x)=x2+4x.(1)求f(x)的解析式,并写出f(x)的单调区间(不用证明);(2)若f(a2-2)+f(a)<0,求... 已知函数f(x)在R上为奇函数,当x≥0时,f(x)=x2+4x.(1)求f(x)的解析式,并写出f(x)的单调区间(不用证明);(2)若f(a2-2)+f(a)<0,求实数a的取值范围. 展开
 我来答
绯色的夏末CV
2015-01-31 · 超过68用户采纳过TA的回答
知道答主
回答量:191
采纳率:0%
帮助的人:158万
展开全部
(1)设 x<0,则-x>0
∴f(-x)=(-x)2+4(-x)=x2-4x
又∵f(x)在R上为奇函数
∴f(x)=-f(-x)=-(x2-4x)=-x2+4x
∴f(x)=
?x2+4x,x<0
x2+4x,x≥0
  单调递增区间是(-∞,+∞)
(2)原不等式等价于:f(a2-2)<-f(a)
∵f(x)在R上为奇函数
∴上式等价于:f(a2-2)<f(-a)   ①
又∵f(x)在(-∞,+∞)上单调递增
①等价于:a2-2<-a,即a2+a-2<0,解得:-2<a<1
故答案为:(-2,1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式