已知等差数列{an},Sn为其前n项和,a5=9,S5=25;数列{bn}满足bn=1an?an+1,Tn为数列{bn}的前n项和,(

已知等差数列{an},Sn为其前n项和,a5=9,S5=25;数列{bn}满足bn=1an?an+1,Tn为数列{bn}的前n项和,(Ⅰ)求:an和Tn;(Ⅱ)若对任意的... 已知等差数列{an},Sn为其前n项和,a5=9,S5=25;数列{bn}满足bn=1an?an+1,Tn为数列{bn}的前n项和,(Ⅰ)求:an和Tn;(Ⅱ)若对任意的n∈N+,不等式λTn<n+8(?1)n恒成立,求实数λ的取值范围. 展开
 我来答
浮云飘过986
推荐于2016-09-14 · 超过68用户采纳过TA的回答
知道答主
回答量:136
采纳率:83%
帮助的人:61.8万
展开全部
(Ⅰ)等差数列{an}中,∵a5=9,S5=25,
a1+4d=9
5a1+
5×4
2
d=25

解得a1=1,d=2,
∴an=2n-1.
bn
1
an?an+1

∴bn=
1
(2n?1)(2n+1)
=
1
2
1
2n?1
?
1
2n+1
),
∴Tn=
1
2
(1?
1
3
+
1
3
?
1
5
+…+
1
2n?1
?
1
2n+1
)
=
n
2n+1

(Ⅱ)①当n为偶数时,要使不等式λTn<n+8?(-1)n恒成立,
即需不等式λ<
(n+8)(2n+1)
n
=2n+
8
n
+17恒成立,
∵2n+
8
n
≥8,等号在n=2时取得.
∴此时λ而满足λ<25.
②当n为奇数时,要使不等式λTn<n+8?(-1)n恒成立,
即需不等式λ<
(n?8)(2n+1)
n
=2n?
8
n
?15
恒成立.
∵2n-
8
n
是随n的增大而增大,∴n=1时取得最小值-6,
此时λ需满足λ<-21.
综合①②得λ<-21,
∴λ的取值范围是{λ|λ<-21}.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式