定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(xy)=f(x)f(y)(x,y∈R),且当x≠0时,

定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(xy)=f(x)f(y)(x,y∈R),且当x≠0时,f(x)≠0.(Ⅰ)求证:f(0)=0;(... 定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(xy)=f(x)f(y)(x,y∈R),且当x≠0时,f(x)≠0.(Ⅰ)求证:f(0)=0; (Ⅱ)证明:f(x)是偶函数,并求f(x)的表达式;(III) 若f(x)+a>ax对任意x∈(1,+∞)恒成立,求实数a的取值范围. 展开
 我来答
智阳兰rL
推荐于2016-08-17 · TA获得超过111个赞
知道答主
回答量:163
采纳率:62%
帮助的人:61.9万
展开全部
(Ⅰ)∵f(x+y)=f(x)+f(y)+2xy,令x=y=0,
∴f(0)=2f(0)
∴f(0)=0;
(Ⅱ)令x=y=1代入f(xy)=f(x)f(y)∴f(1)=f(1)2
∵当x≠0时,f(x)≠0,
∴f(1)=1,
令y=x代入f(x+y)=f(x)+f(y)+2xy,f(xy)=f(x)f(y) (x,y∈R),
f(2x)=2f(x)+2x2,f(2x)=f(2)f(x),
∴f(2)f(x)=2f(x)+2x2
∵f(2)=2f(1)+2=4,
∴f(x)=x2,f(-x)=f(x)
∴f(x)为偶函数.
(III)∵f(x)=x2
∴由f(x)+a>ax,得x2-ax+a>0,
∴f(x)+a>ax对任意x∈(1,+∞)恒成立,
等价于x2-ax+a>0对任意x∈(1,+∞)恒成立,
∵y=x2-ax+a的图象开口向上,对称轴方程是x=
a
2

a
2
≤1
,解得a≤2.
∴实数a的取值范围是(-∞,2].
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式