已知正项等差数列{an}的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.(1)求{an}的通项公式;(2
已知正项等差数列{an}的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.(1)求{an}的通项公式;(2)记bn=an3n的前n项和为Tn,求证Tn<...
已知正项等差数列{an}的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.(1)求{an}的通项公式;(2)记bn=an3n的前n项和为Tn,求证Tn<54.
展开
1个回答
展开全部
解答:(1)解:设公差为d,则∵S3=12,,即a1+a2+a3=12,∴3a2=12,∴a2=4,
又∵2a1,a2,a3+1成等比数列,∴a22=2(a2-d)(a2+d+1),解得d=3或d=-4(舍去),
∴an=a2+(n-2)d=3n-2;----------------------(6分)
(2)证明:bn=
=(3n-2)?
,
∴Tn=1×
+4×
+…+(3n-2)?
,①
∴
Tn=1×
+4×
+…+(3n-5)?
+(3n-2)?
,②
①-②得,
Tn=
+3×
+3×
+…+3?
-(3n-2)?
=
-
?
-(3n-2)?
∴Tn=
-
×
<
.-------------------------(12分)
又∵2a1,a2,a3+1成等比数列,∴a22=2(a2-d)(a2+d+1),解得d=3或d=-4(舍去),
∴an=a2+(n-2)d=3n-2;----------------------(6分)
(2)证明:bn=
an |
3n |
1 |
3n |
∴Tn=1×
1 |
3 |
1 |
32 |
1 |
3n |
∴
1 |
3 |
1 |
32 |
1 |
33 |
1 |
3n |
1 |
3n+1 |
①-②得,
2 |
3 |
1 |
3 |
1 |
32 |
1 |
33 |
1 |
3n |
1 |
3n+1 |
5 |
6 |
1 |
2 |
1 |
3n?1 |
1 |
3n+1 |
∴Tn=
5 |
4 |
6n+5 |
4 |
1 |
3n |
5 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询