3个回答
展开全部
解:a(a+b+c)+bc=(--1)2,(a+b)(a+c)=(--1)2
2a+b+c2-·■
=2(--1)
2a+b+c2-·■
=2(--1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a(a+b+c)+bc
=a(a+b)+ac+bc
=a(a+b)+c(a+b)
=(a+c)(a+b)
=4 -2√3
2a+b+c=(a+b)+(a+c)
≥2√((a+b)(a+c))
=2√(4-2√3)
=2√(√3-1)^2
=2(√3-1)
=2√3-2
所以,2a+b+c的最小值为2√3-2
=a(a+b)+ac+bc
=a(a+b)+c(a+b)
=(a+c)(a+b)
=4 -2√3
2a+b+c=(a+b)+(a+c)
≥2√((a+b)(a+c))
=2√(4-2√3)
=2√(√3-1)^2
=2(√3-1)
=2√3-2
所以,2a+b+c的最小值为2√3-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询