(1)用综合法证明:a2+b2+c2≥ab+bc+ca,(a,b,c∈R);(2)用反证法证明:若a,b,c均为实数,且a=x

(1)用综合法证明:a2+b2+c2≥ab+bc+ca,(a,b,c∈R);(2)用反证法证明:若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z... (1)用综合法证明:a2+b2+c2≥ab+bc+ca,(a,b,c∈R);(2)用反证法证明:若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证a,b,c中至少有一个大于0. 展开
 我来答
瑶瑶TWup2
推荐于2016-09-13 · TA获得超过728个赞
知道答主
回答量:110
采纳率:0%
帮助的人:101万
展开全部
解答:证明:(1)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,
相加可得 2(a2+b2+c2)≥2(ab+bc+ca),
∴a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c时,取等号);
(2)设a、b、c都不大于0,即a≤0,b≤0,c≤0,
∴a+b+c≤0,
而a+b+c=(x2-2y+
π
2
)+(y2-2z+
π
3
)+(z2-2x+
π
6

=(x2-2x)+(y2-2y)+(z2-2z)+π=(x-1)2+(y-1)2+(z-1)2+π-3,
∴a+b+c>0,
这与a+b+c≤0矛盾,
故假设是错误的,
故a、b、c中至少有一个大于0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式