(2011?江苏模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=2AD,E是线段PD上

(2011?江苏模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=2AD,E是线段PD上的点,F是线段AB上的点,且PEED=... (2011?江苏模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=2AD,E是线段PD上的点,F是线段AB上的点,且PEED=BFFA=λ(λ>0)(1)判断EF与平面PBC的关系,并证明;(2)当λ为何值时,DF⊥平面PAC?并证明. 展开
 我来答
容柳VE
2014-11-05 · TA获得超过147个赞
知道答主
回答量:158
采纳率:66%
帮助的人:111万
展开全部
(1)作FG∥BC交CD于G,连接EG,则
BF
FA
= 
CG
GD
PE
ED
= 
BF
FA
= λ
,∴
PE
ED
CG
GD

∴PC∥EG.又FG∥BC,BC∩PC=C,FG∩GE=G,∴平面PBC∥平面EFG.又EF不在平面PBC内,
∴EF∥平面PBC.
(2)当λ=1时,DF⊥平面PAC.
证明如下:∵λ=1,则F为AB的中点,又AB=
2
AD,AF=
1
2
AB

∴在 Rt△FAD 与 Rt△ACD中,tan∠AFD=
AD
AF
AD
2
2
AD
2
,tan∠CAD=
CD
AD
2
AD
AD
2

∴∠AFD=∠CAD,∴AC⊥DF,又PA⊥平面ABCD,DF?平面ABCD,
∴PA⊥DF,∴DF⊥平面PAC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式