
设数列{an}满足:a1=1,an+1=2an+1(n∈N*)(Ⅰ)证明数列{an+1}为等比数列,并求出数列{an}的通项公式
设数列{an}满足:a1=1,an+1=2an+1(n∈N*)(Ⅰ)证明数列{an+1}为等比数列,并求出数列{an}的通项公式;(Ⅱ)若bn=log2(an+1),求数...
设数列{an}满足:a1=1,an+1=2an+1(n∈N*)(Ⅰ)证明数列{an+1}为等比数列,并求出数列{an}的通项公式;(Ⅱ)若bn=log2(an+1),求数列{1bnbn+1}的前n项和Sn.
展开
1个回答
展开全部
(Ⅰ)证明:∵数列{an}满足:a1=1,an+1=2an+1(n∈N*),
∴an+1+1=2(an+1),a1+1=2,
∴数列{an+1}是以2为首项,以2为公比的等比数列,
∴an+1=2n,
∴an=2n-1.
(Ⅱ)解:∵bn=log2(an+1)=n,
∴
=
=
?
,
∴Tn=1-
+
?
+…+
?
=1-
=
.
∴an+1+1=2(an+1),a1+1=2,
∴数列{an+1}是以2为首项,以2为公比的等比数列,
∴an+1=2n,
∴an=2n-1.
(Ⅱ)解:∵bn=log2(an+1)=n,
∴
1 |
bnbn+1 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Tn=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
n |
n+1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询