设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{an},{bn}
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{an},{bn}的通项公式;(Ⅱ)记数列{anbn...
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{an},{bn}的通项公式;(Ⅱ)记数列{anbn}的前n项和为Sn,证明:Sn<6.
展开
1个回答
展开全部
(Ⅰ)设{an}的公差为d,{bn}的公比为q,--------(1分)
则依题意有q>0且
解得d=2,q=2.-------(4分)
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.-----------(6分)
(Ⅱ)
=
.
Sn=1+
+
+…+
+
,①
2Sn=2+3+
+…+
+
,②
由②-①得:Sn=2+2+
+
+…+
?
=2+2×(1+
+
+…+
)?
=2+2×
则依题意有q>0且
|
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.-----------(6分)
(Ⅱ)
an |
bn |
2n?1 |
2n?1 |
Sn=1+
3 |
21 |
5 |
22 |
2n?3 |
2n?2 |
2n?1 |
2n?1 |
2Sn=2+3+
5 |
2 |
2n?3 |
2n?3 |
2n?1 |
2n?2 |
由②-①得:Sn=2+2+
2 |
2 |
2 |
22 |
2 |
2n?2 |
2n?1 |
2n?1 |
=2+2×(1+
1 |
2 |
1 |
22 |
1 |
2n?2 |
2n?1 |
2n?1 |
=2+2×
1?
|