设f(x)=ex-a(x+1).(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值.(2)设g(x)=f(x)+ae
设f(x)=ex-a(x+1).(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值.(2)设g(x)=f(x)+aex,且A(x1,y1),B(x2,y2)(x...
设f(x)=ex-a(x+1).(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值.(2)设g(x)=f(x)+aex,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;(3)求证:1n+3n+…+(2n-1)n<ee?1?(2n)n.
展开
1个回答
展开全部
(1)∵f(x)=ex-a(x+1),∴f′(x)=ex-a,
∵a>0,f′(x)=ex-a=0的解为x=lna,
∴f(x)min=f(lna)=a-a(lna+1)=-alna,
∵f(x)≥0对一切x∈R恒成立,
∴-alna≥0,∴lna≤0,∴0<a≤1,即amax=1.
(2)设x1,x2是任意的两实数,且x1<x2,
则
>m,故g(x2)-mx2>g(x1)-mx1,
∴不妨令函数F(x)=g(x)-mx,则F(x)在(-∞,+∞)上单调递增,
∴F′(x)=g′(x)-m≥0恒成立,
∴对任意的a≤-1,x∈R,m≤g′(x)恒成立,
g′(x)=ex?a?
≥2
-a=-a+2
=(
+1)2?1≥3,
故m≤3;
(3)由(1)知ex≥x+1,取x=?
,i=1,3,…,2n-1,得1-
≤e
,即(
)n≤e?
,
累加得:(
)n+(
)n+…+(
)n≤e?
+e?
+…+e?
∵a>0,f′(x)=ex-a=0的解为x=lna,
∴f(x)min=f(lna)=a-a(lna+1)=-alna,
∵f(x)≥0对一切x∈R恒成立,
∴-alna≥0,∴lna≤0,∴0<a≤1,即amax=1.
(2)设x1,x2是任意的两实数,且x1<x2,
则
g(x2)?g(x1) |
x2?x1 |
∴不妨令函数F(x)=g(x)-mx,则F(x)在(-∞,+∞)上单调递增,
∴F′(x)=g′(x)-m≥0恒成立,
∴对任意的a≤-1,x∈R,m≤g′(x)恒成立,
g′(x)=ex?a?
a |
ex |
ex?(?
|
?a |
?a |
故m≤3;
(3)由(1)知ex≥x+1,取x=?
i |
2n |
i |
2n |
i |
2n |
2n?i |
2n |
i |
2 |
累加得:(
1 |
2n |
3 |
2n |
2n?1 |
2n |
2n?1 |
2 |
2n?3 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|