设f′(x)是f(x)的导函数,证明:1ud2udx2=1vd2vdx2.其中u=[f′(x)] ?12,v=f(x)[f′(x)] ?12
设f′(x)是f(x)的导函数,证明:1ud2udx2=1vd2vdx2.其中u=[f′(x)]?12,v=f(x)[f′(x)]?12....
设f′(x)是f(x)的导函数,证明:1ud2udx2=1vd2vdx2.其中u=[f′(x)] ?12,v=f(x)[f′(x)] ?12.
展开
ali6357
2014-12-02
·
TA获得超过147个赞
关注
解答:证明:∵
u=[f′(x)]?∴
u′=?f′(x)?f″(x)u″=?f′(x)?f″′(x)+?f′(x)?f″2(x)∴
=?f′(x)?1f″′(x)+f′(x)?2f″2(x)又∵
v=f(x)f′(x)?∴
v′=f′(x)+f(x)?(?)f′(x)?f″(x)v″=f′(x)?f″(x)?[f′(x)?f″(x)+f(x)(?)f′(x)?f″2(x)+f(x)f′(x)?f″′(x)]而
=f?1(x)f″(x)?f″(x)+f′(x)?2f?1(x)f″2(x)?f′(x)?1f″′(x)=u″∴
=
得证.
收起
为你推荐: