已知P为抛物线y2=4x上一点,Q为圆C:(x+2)2+(y-2)2=1上一点,点P到直线l:x=-1的距离为d,则|PQ|+d的

已知P为抛物线y2=4x上一点,Q为圆C:(x+2)2+(y-2)2=1上一点,点P到直线l:x=-1的距离为d,则|PQ|+d的最小值为13-113-1.... 已知P为抛物线y2=4x上一点,Q为圆C:(x+2)2+(y-2)2=1上一点,点P到直线l:x=-1的距离为d,则|PQ|+d的最小值为13-113-1. 展开
 我来答
退潮244
2014-12-18 · TA获得超过109个赞
知道答主
回答量:127
采纳率:100%
帮助的人:159万
展开全部
解答:解:如图,抛物线y2=4x的焦点F(1,0),准线l:x=-1,
圆C:(x+2)2+(y-2)2=1的圆心C(-2,2),半径r=1,
由抛物线定义知:
点P到直线l:x=-1距离d=|PF|,
∴当C、P、F三点共线时,|PQ|+d取最小值,
∴(|PQ|+d)min
=|FC|-r
=
(1+2)2+22
-1
=
13
-1.
故答案为:
13
-1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式