如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证

如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)... 如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长. 展开
 我来答
牢昂杰3T
2015-01-17 · 超过61用户采纳过TA的回答
知道答主
回答量:124
采纳率:75%
帮助的人:53.5万
展开全部
(1)证明见解析;(2)证明见解析;(3)DE=


试题分析:(1)根据垂直平分线的判断方法与性质易得AD是BC的垂直平分线,故可得AB=AC;
(2)连接OD,由平行线的性质,易得OD⊥DE,且DE过圆周上一点D故DE为⊙O的切线;
(3)由AB=AC,∠BAC=60°知△ABC是等边三角形,根据等边三角形的性质,可得AB=BC=10,CD= BC=5;又∠C=60°,借助三角函数的定义,可得答案.
(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°;
∵BD=CD,
∴AD是BC的垂直平分线.
∴AB=AC.
(2)证明:如图,连接OD,
∵点O、D分别是AB、BC的中点,
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE.
∴DE为⊙O的切线.

(3)解:由AB=AC,∠BAC=60°知△ABC是等边三角形,
∵⊙O的半径为5,
∴AB=BC=10,CD= BC=5.
∵∠C=60°,
∴DE=CD?sin60°=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式