
已知数列{an}满足对一切n∈N*有an>0,且a13+a23+…+an3=Sn2,其中Sn=a1+a2+…+an.(I)求证:对一切n∈
已知数列{an}满足对一切n∈N*有an>0,且a13+a23+…+an3=Sn2,其中Sn=a1+a2+…+an.(I)求证:对一切n∈N*有an+12-an+1=2S...
已知数列{an}满足对一切n∈N*有an>0,且a13+a23+…+an3=Sn2,其中Sn=a1+a2+…+an.(I)求证:对一切n∈N*有an+12-an+1=2Sn;(II)求数列{an}通项公式;(Ⅲ)设数列{bn}满足bn=2n?an,Tn为数列{bn}的前n项和,求Tn的表达式.
展开
2个回答
展开全部
(I)∵a13+a23+…+an3=Sn2,
+
+…+
+
=
,
∴
?
=
,
∴(Sn+1-Sn)(Sn+1+Sn)=
,
即an+1(Sn+1+Sn)=
,又an+1>0,
∴Sn+1+Sn=
,∴2Sn+an+1=
,
∴an+12-an+1=2Sn;
(II)当n≥2时,
由an+12-an+1=2Sn及
?an=2Sn?1可得(an+1-an)(an+1+an)=an+1+an,
∵an+1+an>0,∴an+1-an=1,(*)
当n=1时,
=
=
,a1>0,可得a1=1,
当n=2时,
+
=
,得到1+
=(1+a2)2,及a2>0,解得a2=2.
a2-a1=1也满足(*).
∴数列{an}是以1为首项,1为公差的等差数列,其通项公式an=1+(n-1)×1=n.
(III)∵bn=2n?an═n?2n,∴Tn=1×2+2×22+3×23+…+n×2n,
2Tn=1×22+2×23+…+(n-1)×2n+n?2n+1,
∴-Tn=2+22+23+…+2n-n?2n+1
=
?n?2n+1=2n+1-2-n?2n+1=(1-n)?2n+1-2,
∴Tn=(n?1)?2n+1+2.
a | 3 1 |
a | 3 2 |
a | 3 n |
a | 3 n+1 |
S | 2 n+1 |
∴
S | 2 n+1 |
S | 2 n |
a | 3 n+1 |
∴(Sn+1-Sn)(Sn+1+Sn)=
a | 3 n+1 |
即an+1(Sn+1+Sn)=
a | 3 n+1 |
∴Sn+1+Sn=
a | 2 n+1 |
a | 2 n+1 |
∴an+12-an+1=2Sn;
(II)当n≥2时,
由an+12-an+1=2Sn及
a | 2 n |
∵an+1+an>0,∴an+1-an=1,(*)
当n=1时,
a | 3 1 |
S | 2 1 |
a | 2 1 |
当n=2时,
a | 3 1 |
a | 3 2 |
S | 2 2 |
a | 3 2 |
a2-a1=1也满足(*).
∴数列{an}是以1为首项,1为公差的等差数列,其通项公式an=1+(n-1)×1=n.
(III)∵bn=2n?an═n?2n,∴Tn=1×2+2×22+3×23+…+n×2n,
2Tn=1×22+2×23+…+(n-1)×2n+n?2n+1,
∴-Tn=2+22+23+…+2n-n?2n+1
=
2×(2n?1) |
2?1 |
∴Tn=(n?1)?2n+1+2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询