求证:任意一个三角形的两条角平分线的交点一定在第三条角平分线上
3个回答
展开全部
证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,
∵P在∠BAC的平分线AD上,
∴PM=PQ,P在∠ABC的平分线BE上,
∴PM=PN,
∴PQ=PN,
∴点P在∠C的平分线.
∵P在∠BAC的平分线AD上,
∴PM=PQ,P在∠ABC的平分线BE上,
∴PM=PN,
∴PQ=PN,
∴点P在∠C的平分线.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询