不定积分,求原函数

求1/(1+x*x*x*x)的原函数... 求1/(1+x*x*x*x)的原函数 展开
 我来答
匿名用户
2015-01-10
展开全部

答案在图片上

谱尼BOSS1
2015-01-10 · TA获得超过2万个赞
知道大有可为答主
回答量:6199
采纳率:67%
帮助的人:2175万
展开全部
解:1+x^4 = (1+x²)² - 2x² = (1+x²+√2x)(1+x²-√2x)
1/(1+x^4)
= [1/(1+x²-√2x) - 1/(1+x²+√2x)]/2√2x
= 1/2√2 *[1/x + (√2-x)/(1+x²-√2x) - 1/x + (√2+x)/(1+x²+√2x)]
= 1/4√2 * [(2x+2√2)/(x²+√2x+1) - (2x-2√2)/(x²+1-√2x)]
= 1/4√2 *[(2x+√2)/(x²+√2x+1) - (2x-√2)/(x²+1-√2x) + √2/(x²+√2x+1) + √2/(x²+1-√2x)]
对(2x+√2)/(x²+√2x+1)求积分得ln(x²+√2x+1)
对(2x-√2)/(x²+1-√2x)求积分得ln(x²+1-√2x)
对√2/(x²+√2x+1)求积分得2arctan(√2x+1)
对√2/(x²-√2x+1)求积分得2arctan(√2x-1)
原式 = 1/4√2 *{ln[(x²+√2x+1))/(x²+1-√2x)] + 2arctan(√2x+1) + 2arctan(√2x-1)} + C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式