如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关
如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′(2,0)的坐标为(2,0),请在图中分别标明B...
如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′(2,0)的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′______、C′______;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为______(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.
展开
展开全部
解:(1)如图:B′(3,5),C′(5,-2);
(2)(b,a);
(3)由(2)得,D(1,-3)关于直线l的对称点D′的坐标为(-3,1),连接D′E交直线l于点Q,此时点Q到D、E两点的距离之和最小.
设过D′(-3,1)、E(-1,-4)直线的解析式为y=kx+b,
则
∴
∴直线D′E的解析式为:y=-
x-
由
得
(2)(b,a);
(3)由(2)得,D(1,-3)关于直线l的对称点D′的坐标为(-3,1),连接D′E交直线l于点Q,此时点Q到D、E两点的距离之和最小.
设过D′(-3,1)、E(-1,-4)直线的解析式为y=kx+b,
则
|
∴
|
∴直线D′E的解析式为:y=-
5 |
2 |
13 |
2 |
由
|
得
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|