如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(
如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(2)利用(1)的结论解答:①如图2,AP1、BP...
如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(2)利用(1)的结论解答:①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你直接写出∠P与∠P1的数量关系.②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=80°,求∠AP2B的度数.
展开
1个回答
展开全部
解答:(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质),
即∠APB=∠DAP+∠FBP;
(2)∠P=2∠P1;
(3)由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=
∠CAP,∠EBP2=
∠EBP,
∴∠AP2B=
∠CAP+
∠EBP,
=
(180°-∠DAP)+
(180°-∠FBP),
=180°-
(∠DAP+∠FBP),
=180°-40°,
=140°.
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质),
即∠APB=∠DAP+∠FBP;
(2)∠P=2∠P1;
(3)由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=
1 |
2 |
1 |
2 |
∴∠AP2B=
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
=180°-
1 |
2 |
=180°-40°,
=140°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询