分式方程的增根和无解怎么有什么区别?
4个回答
展开全部
一、使用不同:
当分式方程中使分母为零的根为增根,使分母不为零的根不是增根;当方程推出矛盾等式或解出的根全部是增根时,方程无解。
二、含义不同:
增根时,可能还有合理根存在;无解时,没有合理根。
三、作用不同:
无解指在规定范围和条件内,没有任何数可以满足方程。
增根是指可以通过方程求出,但是不满足条件只能舍去的解。常见于分式方程。
扩展资料:
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。
如果分式本身约分了,也要代入进去检验。在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
参考资料来源:百度百科-分式方程
展开全部
增跟是无解的一种情形。2次方程中在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根.如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.分式方程两边都乘以最简公分母化分式方程为整式方程,这时未知数的允许值扩大,因此解分式方程容易发生増根.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
展开全部
当分式方程中使分母为零的根为增根,使分母不为零的根不是增根;当方程推出矛盾等式或解出的根全部是增根时,方程无解。增根和无解的区别应该是:增根时,可能还有合理根存在;无解时,没有合理根。
当分式方程中使分母为零的根为增根,使分母不为零的根不是增根;当方程推出矛盾等式或解出的根全部是增根时,方程无解。增根和无解的区别应该是:增根时,可能还有合理根存在;无解时,没有合理根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询