解方程公式法
5个回答
展开全部
把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
例:用公式法解方程 2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
扩展资料:
二元一次方程一般解法:
消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:
1、代入消元
例:解方程组x+y=5① 6x+13y=89②
解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7
把y=59/7带入③,得x=5-59/7,即x=-24/7
∴x=-24/7,y=59/7
这种解法就是代入消元法。
2、加减消元
例:解方程组x+y=9① x-y=5②
解:①+②,得2x=14,即x=7
把x=7带入①,得7+y=9,解得y=2
∴x=7,y=2
这种解法就是加减消元法。
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
展开全部
y=k/x 其中X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^-1
y=k\x(k为常数(k≠0),x不等于0)
自变量的取值范围编辑
① k ≠ 0; ②一般情况下 , 自变量 x 的取值范围是 x ≠ 0 的任意实数 ; ③函数 y 的取值范围也是任意非零实数 .
反比例函数图象编辑
反比例函数的图像属于以原点对称的双曲线,
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会相交(K≠0)。
反比例函数性质编辑
1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数性质
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则b²+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
反比例函数的应用举例编辑
【例1】反比例函数 的图象上有一点P(m, n)其坐标是关于t的一元二次方程t2-3t+k=0的两根,且P到原点的距离为根号13,求该反比例函数的解析式.
分析:
要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程.
解:∵ m, n是关于t的方程t2-3t+k=0的两根
∴ m+n=3,mn=k, (根据韦达定理--根于系数的关系)
又 PO=根号13,
∴ m2+n2=13,
∴(m+n)2-2mn=13,
∴ 9-2k=13.
∴ k=-2
当 k=-2时,△=9+8>0,
∴ k=-2符合条件,
【例2】直线 与位于第二象限的双曲线 相交于A、A1两点,过其中一点A向x、y轴作垂线,垂足分别为B、C,矩形ABOC的面积为6,求:
(1)直线与双曲线的解析式;
(2)点A、A1的坐标.
分析:矩形ABOC的边AB和AC分别是A点到x轴和y轴的垂线段,
设A点坐标为(m,n),则AB=|n|, AC=|m|,
根据矩形的面积公式知|m·n|=6.
y=k/x=k·1/x
xy=k
y=k·x^-1
y=k\x(k为常数(k≠0),x不等于0)
自变量的取值范围编辑
① k ≠ 0; ②一般情况下 , 自变量 x 的取值范围是 x ≠ 0 的任意实数 ; ③函数 y 的取值范围也是任意非零实数 .
反比例函数图象编辑
反比例函数的图像属于以原点对称的双曲线,
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会相交(K≠0)。
反比例函数性质编辑
1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数性质
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则b²+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
反比例函数的应用举例编辑
【例1】反比例函数 的图象上有一点P(m, n)其坐标是关于t的一元二次方程t2-3t+k=0的两根,且P到原点的距离为根号13,求该反比例函数的解析式.
分析:
要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程.
解:∵ m, n是关于t的方程t2-3t+k=0的两根
∴ m+n=3,mn=k, (根据韦达定理--根于系数的关系)
又 PO=根号13,
∴ m2+n2=13,
∴(m+n)2-2mn=13,
∴ 9-2k=13.
∴ k=-2
当 k=-2时,△=9+8>0,
∴ k=-2符合条件,
【例2】直线 与位于第二象限的双曲线 相交于A、A1两点,过其中一点A向x、y轴作垂线,垂足分别为B、C,矩形ABOC的面积为6,求:
(1)直线与双曲线的解析式;
(2)点A、A1的坐标.
分析:矩形ABOC的边AB和AC分别是A点到x轴和y轴的垂线段,
设A点坐标为(m,n),则AB=|n|, AC=|m|,
根据矩形的面积公式知|m·n|=6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-03-17 · 知道合伙人教育行家
关注
展开全部
1.
4x^2+4x-1+10+8x=0
4x^2+12x-9=0
a=4, b=12 c=-9
△=b^2-4ac
=12^2-4*4*(-9)
=288>0
x=(-12±根号△)/(2*4)
=-12±12根号2/8
=-3±3根号2/2
x1=-3+3根号3/2 x2=-3-3根号3/2
2. 5x^2+10-8x=0
a=5 b=-8 c=10
△=b^2-4ac
=(-8)^2-4*5*10
=64-200
=-140<0
所以 原方程无实数根.
希望能帮到你, 望采纳. 祝学习进步
4x^2+4x-1+10+8x=0
4x^2+12x-9=0
a=4, b=12 c=-9
△=b^2-4ac
=12^2-4*4*(-9)
=288>0
x=(-12±根号△)/(2*4)
=-12±12根号2/8
=-3±3根号2/2
x1=-3+3根号3/2 x2=-3-3根号3/2
2. 5x^2+10-8x=0
a=5 b=-8 c=10
△=b^2-4ac
=(-8)^2-4*5*10
=64-200
=-140<0
所以 原方程无实数根.
希望能帮到你, 望采纳. 祝学习进步
更多追问追答
追问
图片有吗?写下来
追答
没
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-03-17
展开全部
很简单
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |