已知定义在R上的可导函数,f(x)满足2f(x)+xf‘(x)>x²
1个回答
展开全部
解法一、因为 2f(x)+xf′(x)>x² …………①,下面予以讨论:
(1)x= 0时,代入①得:f(0) > 0
(2)x>0 时,①的两边同乘以x :2xf(x)+x²f′(x) > x³ ,即
[x²f(x)]′> x³>0,所以函数y= x²f(x)是R+上的增函数,而x>0,
故:x²f(x) > 0²f(0) = 0 ,所以 f(x) > 0
(3)x<0 时,①的两边同乘以x :2xf(x)+x²f′(x) < x³,即
[x²f(x)]′<x³< 0,所以函数y= x²f(x)是R-上的增函数,又x< 0,
故:x²f(x)> 0²f(0) = 0 ,所以也有 f(x) >0
综上可知,x∈R 时,总有 f(x)>0
所以选 C
解法二、
选择题也可以这样来做!
把x=0代入 2f(x)+xf′(x)>x²
由f(0) > 0 即排除选项B和D,
显然 f(x)=x²+a(a>0)时 已知条件 2f(x)+xf′(x)>x² 成立,
但f(x)>x 未必成立,所以C也是错的,故选 C
(1)x= 0时,代入①得:f(0) > 0
(2)x>0 时,①的两边同乘以x :2xf(x)+x²f′(x) > x³ ,即
[x²f(x)]′> x³>0,所以函数y= x²f(x)是R+上的增函数,而x>0,
故:x²f(x) > 0²f(0) = 0 ,所以 f(x) > 0
(3)x<0 时,①的两边同乘以x :2xf(x)+x²f′(x) < x³,即
[x²f(x)]′<x³< 0,所以函数y= x²f(x)是R-上的增函数,又x< 0,
故:x²f(x)> 0²f(0) = 0 ,所以也有 f(x) >0
综上可知,x∈R 时,总有 f(x)>0
所以选 C
解法二、
选择题也可以这样来做!
把x=0代入 2f(x)+xf′(x)>x²
由f(0) > 0 即排除选项B和D,
显然 f(x)=x²+a(a>0)时 已知条件 2f(x)+xf′(x)>x² 成立,
但f(x)>x 未必成立,所以C也是错的,故选 C
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询