高等数学。计算下列定积分。 30
1个回答
展开全部
(1)
let
y=t^2
dy =2tdt
t=0, y=0
t=√x, y=x
∫(0->√x ) t.sin(t^2) dt
=(1/2)∫(0->x ) siny dy
=(1/2) ( cosx -1 )
(2)
∫(0->π/2 ) (cosx)^5. sinx dx
=-∫(0->π/2 ) (cosx)^5. dcosx
=-(1/6)[ (cosx)^6] |(0->π/2 )
=1/6
(3)
let
y=x-1
∫(0->2 ) |x-1| dx
=∫(-1->1 ) |y| dy
=-∫(-1->0 ) y dy +∫(0->1 ) y dy
=- (1/2) [y^2]|(-1->0) + (1/2) [y^2]|(0->1)
=1
let
y=t^2
dy =2tdt
t=0, y=0
t=√x, y=x
∫(0->√x ) t.sin(t^2) dt
=(1/2)∫(0->x ) siny dy
=(1/2) ( cosx -1 )
(2)
∫(0->π/2 ) (cosx)^5. sinx dx
=-∫(0->π/2 ) (cosx)^5. dcosx
=-(1/6)[ (cosx)^6] |(0->π/2 )
=1/6
(3)
let
y=x-1
∫(0->2 ) |x-1| dx
=∫(-1->1 ) |y| dy
=-∫(-1->0 ) y dy +∫(0->1 ) y dy
=- (1/2) [y^2]|(-1->0) + (1/2) [y^2]|(0->1)
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询