计算积分😢
2个回答
展开全部
令x=tant,dx=sec^2tdt
原式=∫(0,π/4) ln(1+tant)/sec^2t*sec^2tdt
=∫(0,π/4) ln(1+tant)dt
=∫(0,π/4) ln[(cost+sint)/cost]dt
=∫(0,π/4) ln(cost+sint)dt-∫(0,π/4) ln(cost)dt
=∫(0,π/4) ln[√2*cos(t-π/4)]dt-∫(0,π/4) ln(cost)dt
=∫(0,π/4) ln(√2)dt+∫(0,π/4) ln[cos(π/4-t)]dt-∫(0,π/4) ln(cost)dt
针对中间那个定积分,令u=π/4-t,dt=-du
原式=ln(√2)t|(0,π/4)-∫(π/4,0) ln(cosu)du-∫(0,π/4) ln(cost)dt
=(ln2)π/8
原式=∫(0,π/4) ln(1+tant)/sec^2t*sec^2tdt
=∫(0,π/4) ln(1+tant)dt
=∫(0,π/4) ln[(cost+sint)/cost]dt
=∫(0,π/4) ln(cost+sint)dt-∫(0,π/4) ln(cost)dt
=∫(0,π/4) ln[√2*cos(t-π/4)]dt-∫(0,π/4) ln(cost)dt
=∫(0,π/4) ln(√2)dt+∫(0,π/4) ln[cos(π/4-t)]dt-∫(0,π/4) ln(cost)dt
针对中间那个定积分,令u=π/4-t,dt=-du
原式=ln(√2)t|(0,π/4)-∫(π/4,0) ln(cosu)du-∫(0,π/4) ln(cost)dt
=(ln2)π/8
追问
谢谢!😄
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询