高等数学 求偏导问题 最好写下来过程
1个回答
展开全部
解:
令u=u(x,y),
对该式求全微分,则:
du=u'xdx+u'ydy (1)
其中:
u'x=u'x(x,y),是u(x,y)对x求一阶偏导;
u'y=u'y(x,y),是u(x,y)对y求一阶偏导;
根据已知要求,将y=2x带入上式,则:
(1)左边
=du=du(x,2x)=dx
(1)右边
=u'xdx+u'yd(2x)
=x²dx+2u'ydx
因此:
dx=x²dx+2u'ydx,得:
u'y=u'y(x,2x)=(1-x²)/2 (2)
令u'=u'x(x,y),对该函数求全微分,则:
du'=u''xxdx+u''xydy (3)
将y=2x带入上式,则:
(4)式左边
=du'=du'x(x,2x)=d(x²)=2xdx
(4)式右边
=u''xxdx+u''xyd(2x)=u''xxdx+2u''xydx
即:
2xdx=u''xxdx+2u''xydx
2x=u''xx+2u''xy (4)
同理,对(2)求全微分:
du'y(x,y)=u''yxdx+u''yydy
-dx=u''yxdx+2u''yydx
u(x,y)二阶连续偏导,因此混合偏导相等,再结合u''xx(x,2x)=u''yy(x,2x),则:
-xdx=u''xydx+2u''xxdx
-x=u''xy+2u''xx (5)
联立(4)、(5)得:
u''xx=u''xx(x,2x)= -4x/3
u''xy=u''xy(x,2x)=5x/3
令u=u(x,y),
对该式求全微分,则:
du=u'xdx+u'ydy (1)
其中:
u'x=u'x(x,y),是u(x,y)对x求一阶偏导;
u'y=u'y(x,y),是u(x,y)对y求一阶偏导;
根据已知要求,将y=2x带入上式,则:
(1)左边
=du=du(x,2x)=dx
(1)右边
=u'xdx+u'yd(2x)
=x²dx+2u'ydx
因此:
dx=x²dx+2u'ydx,得:
u'y=u'y(x,2x)=(1-x²)/2 (2)
令u'=u'x(x,y),对该函数求全微分,则:
du'=u''xxdx+u''xydy (3)
将y=2x带入上式,则:
(4)式左边
=du'=du'x(x,2x)=d(x²)=2xdx
(4)式右边
=u''xxdx+u''xyd(2x)=u''xxdx+2u''xydx
即:
2xdx=u''xxdx+2u''xydx
2x=u''xx+2u''xy (4)
同理,对(2)求全微分:
du'y(x,y)=u''yxdx+u''yydy
-dx=u''yxdx+2u''yydx
u(x,y)二阶连续偏导,因此混合偏导相等,再结合u''xx(x,2x)=u''yy(x,2x),则:
-xdx=u''xydx+2u''xxdx
-x=u''xy+2u''xx (5)
联立(4)、(5)得:
u''xx=u''xx(x,2x)= -4x/3
u''xy=u''xy(x,2x)=5x/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询