高等数学的几个积分问题

题一:求∫Lxydx,L为抛物线Y^2=X上从点A(1,-1)到B(1,1)的一段弧题二:求∫∫D(X+Y)dXdY,其中D是圆X^2+Y^2<=X的内部题三:计算∫∫S... 题一:求∫L xy dx,L为抛物线Y^2=X上从点A(1,-1)到B(1,1)的一段弧

题二:求∫∫D (X+Y)dXdY,其中D是圆X^2+Y^2<=X的内部

题三:计算∫∫S (X^2+Y^2)dS,其中S为立体(X^2+Y^2)^(1/2)<=Z<=1的边界

求教过程和解题思路,谢谢!
展开
百度网友9bd36f4a2
2008-08-20 · TA获得超过179个赞
知道答主
回答量:118
采纳率:0%
帮助的人:124万
展开全部
题一:因为Y^2=X 所以2ydy=dx 所以∫L xy dx=∫(y^3)2ydy 积分区间为-1〈y〈1
∫L xy dx=∫(y^3)2ydy=4/5

题二;X^2+Y^2≤X 所以(x-1/2)^2+(y)^2≤1/4
不妨设X=Pcos(t) y=Psint(t) 0≤p≤1/4 0≤t≤2pi
所以∫∫{[Pcos(t)+Psin(t)]p}dpdt, 所以积分区间为 0≤p≤1/4 0≤t≤2pi 再分步积分,得到答案

题三;(X^2+Y^2)^(1/2)<=Z<=1 因为(X^2+Y^2)^(1/2)<=Z<=1 是一个抛物面
和Z=1平面组成的曲面,所以设其体积为V,所以V也可以看成一个圆柱体的体积V1(Z=0,Z=1,(X^2+Y^2)^(1/2)=1)和一个曲体积V2[Z=0,Z=(X^2+Y^2)^(1/2)]这2个体积差,因为V1=π*1^2*1=1,V2的体积由曲面积分的公式可以类似第2题一样得到,所以V=V1-V2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式