作AD′⊥AD,AD′=AD,连接CD′,DD′,
∵∠ABC=∠ACB=45°,
∴AB=AC.
∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′
∵AB=AC,∠BAD=∠CAD′,AD=AD′
∴△BAD≌△CAD′(SAS)
∴BD=CD′
在Rt△ADD′中,由勾股定理得
DD′=√(AD²+AD′²)=√(3²+3²)=3√2
∵∠D′DA=∠ADC=45°,
∴∠D′DC=90°.
在Rt△CDD′中,由勾股定理得
CD′=√(CD²+DD′²)=√[4²+(3√2)²]=√34
∴BD=CD′=√34