如果一个n阶行列式有一行或是一列全是1 证明此行列式等于它的所有元素的代数余子式之和

 我来答
教育小百科达人
2019-10-02 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

以第一行全为1的行列式为例。根据性质按第一行展开得D=1×A11+1×A12+...+1×A1n=A11+A12+..+A1n。

第一行元素与其它行的代数余子式乘积之和为0,即k>1时,0=1×Ak1+1×Ak2+...+1×Akn=Ak1+Ak2+..+Akn。

所以所有代数余子式之和是A11+A12+...+A1n+A21+A22+...+A2n+...+An1+An2+...+Ann=D+0+...+0=D。

扩展资料:

把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。如果行列式中有两行(列)相同,那么行列式为零。

对任意的 n(n≥2),n阶范德蒙德行列式等于a1,a2,...,an这n个数的所有可能的差ai-aj(1≤j<i≤n)的乘积。

参考资料来源:百度百科--n阶行列式

hxzhu66
高粉答主

推荐于2017-11-23 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:97%
帮助的人:1.2亿
展开全部
你好!以第一行全为1的行列式为例。根据性质按第一行展开得D=1×A11+1×A12+...+1×A1n=A11+A12+..+A1n。第一行元素与其它行的代数余子式乘积之和为0,即k>1时,0=1×Ak1+1×Ak2+...+1×Akn=Ak1+Ak2+..+Akn。所以所有代数余子式之和是A11+A12+...+A1n+A21+A22+...+A2n+...+An1+An2+...+Ann=D+0+...+0=D。经济数学团队帮你解答,请及时采纳。谢谢!
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式