求不定积分∫x/(x^8-1)dx
设t=x^2
则dt=2xdx
∴xdx/(x^8-1)=dt/2(t^4-1)
1/(t^4-1)=(1/2)*[1/(t^2-1)-1/(t^2+1)]
=(1/4)*[1/(t-1)-1/(t+1)]-(1/2)*[1/(t^2+1)]
∴∫xdx/(x^8-1)
=(1/8)*In(|t-1|/|t+1|)-(1/4)*arctant+C
=(1/8)*In(|x^2-1|/|x^2+1|)-(1/4)*arctan(x^2)+C
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
函数的和的不定积分等于各个函数的不定积分的和;求不定积分时,被积函数中的常数因子可以提到积分号外面来。
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
参考资料来源:百度百科——不定积分
=x/(x²+1)+2∫1/(x²+1)dx-2∫1/(x²+1)²dx
所以∫1/(x²+1)²dx=x/2(x²+1)+1/2∫1/(x²+1)dx
=x/2(x²+1)+1/2arctanx+c
原式=1/4∫1/(x^8+1)²d(x^4)
=x^4/8(x^8+1)+1/8arctanx^4+c