求证明3的公式 做好过程能详细一点 手写最好
展开全部
证明:∫√(x²+a)dx= (令x=√atany,则dx=√asec²ydy)
∫√a*secy*√asec²ydy=a∫sec³ydy=
a∫cosy/(cosy)^4dy=a∫d(siny)/(1-sin²y)² (令z=siny)
=a∫dz/(1-z²)²
令1/(1-z²)²=A/(z+1)²+B/(z+1)+C/(z-1)²+D/(z-1)
得
1=A(z-1)²+B(z+1)(z-1)²+C(z+1)²+D(z+1)²(z-1)
分别令z=-1,0,1,2后联立解得
A=1/4 B=1/4 C=1/4 D=-1/4
于是
原积分式=a/4*∫[1/(z+1)²+1/(z+1)+1/(z-1)²-1/(z-1)]dz
=a/4*[-1/(z+1)+ln|z+1|-1/(z-1)-ln|z-1|]+c
=a/4*{ln[(1+siny)/(1-siny)]-1/(1+siny)-1/(siny-1)}+c
=a/4*{ln[(1+siny)²/cos²y]+2siny/cos²y}+c
=a/2*ln[√(x²+a)+x]-a/4*lna+1/2*x√(x²+a)+c
=a/2*ln[√(x²+a)+x]+1/2*x√(x²+a)+c'=右边
∫√a*secy*√asec²ydy=a∫sec³ydy=
a∫cosy/(cosy)^4dy=a∫d(siny)/(1-sin²y)² (令z=siny)
=a∫dz/(1-z²)²
令1/(1-z²)²=A/(z+1)²+B/(z+1)+C/(z-1)²+D/(z-1)
得
1=A(z-1)²+B(z+1)(z-1)²+C(z+1)²+D(z+1)²(z-1)
分别令z=-1,0,1,2后联立解得
A=1/4 B=1/4 C=1/4 D=-1/4
于是
原积分式=a/4*∫[1/(z+1)²+1/(z+1)+1/(z-1)²-1/(z-1)]dz
=a/4*[-1/(z+1)+ln|z+1|-1/(z-1)-ln|z-1|]+c
=a/4*{ln[(1+siny)/(1-siny)]-1/(1+siny)-1/(siny-1)}+c
=a/4*{ln[(1+siny)²/cos²y]+2siny/cos²y}+c
=a/2*ln[√(x²+a)+x]-a/4*lna+1/2*x√(x²+a)+c
=a/2*ln[√(x²+a)+x]+1/2*x√(x²+a)+c'=右边
追问
谢谢你的回答,这道题可以用部分积分法做出来吗。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询