二阶常系数非齐次微分方程的特解怎么设,有什么规律
较常用的几个:
1、Ay''+By'+Cy=e^mx
特解 y=C(x)e^mx
2、Ay''+By'+Cy=a sinx + bcosx
特解 y=msinx+nsinx
3、Ay''+By'+Cy= mx+n
特解 y=ax
拓展资料:
其他解法
①通解=非齐次方程特解+齐次方程通解
对二阶常系数线性非齐次微分方程形式ay''+by'+cy=p(x)eax的特解y*具有形式
其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2.
将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。
②多项式法:
设常系数线性微分方程y''+py'+qy =pm (x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) ,则方程可化为:
F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式。
③升阶法:
设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……
y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!
y^(n+2)+py^(n+1)+qy^(n)=a0n!
令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一个特解y(x)。
④微分算子法:
微分算子法是求解不同类型常系数非齐次线性微分方程特解的有效方法,使用微分算子法求解二阶常系数非齐次线性微分方程的特解记忆较为方便,计算难度也可降低。引入微分算子d/dx=D,d^2/dx^2=D^2,则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y
于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x),令F(D)=D^2+pD+q,称为算子多项式,F(D)=D^2+pD+q即为F(D)y=f(x),其特解为y=f(x)/F(D)。
⑤降解法:
如果已知线性微分方程对应齐次方程的一个特解,就可以用降解法求出其解,线性齐次微分方程的特解也可以用降阶法求出。
Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx
Ay''+By'+Cy=a sinx + bcosx y=msinx+nsinx
Ay''+By'+Cy= mx+n y=ax