求解微积分
2个回答
展开全部
(1)令lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]=L
根据极限定义,∀ε>0,∃正整数N1,使当n>N1时,有|[x(n+1)-xn]/[y(n+1)-yn]-L|<ε
即L-ε<[x(n+1)-xn]/[y(n+1)-yn]<L+ε
因为y(n+1)-yn>0,所以(L-ε)[y(n+1)-yn]<[x(n+1)-xn]<(L+ε)[y(n+1)-yn]
因为lim(n->∞) yn=+∞,所以∃正整数N2,使当n>N2时,有yn>ε>0
取N=max{N1,N2},使当n>N时,有
(L-ε)[y(N+2)-y(N+1)]<[x(N+2)-x(N+1)]<(L+ε)[y(N+2)-y(N+1)]
(L-ε)[y(N+3)-y(N+2)]<[x(N+3)-x(N+2)]<(L+ε)[y(N+3)-y(N+2)]
......
(L-ε)[y(n+1)-yn]<[x(n+1)-xn]<(L+ε)[y(n+1)-yn]
上述(n-N)个式子相加,得:
(L-ε)[y(n+1)-y(N+1)]<[x(n+1)-x(N+1)]<(L+ε)[y(n+1)-y(N+1)]
因为y(n+1)>y(N+1),所以
L-ε<[x(n+1)-x(N+1)]/[y(n+1)-y(N+1)]<L+ε
因为y(n+1)>0,所以分子分母同除以y(n+1),得:
L-ε<[x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]<L+ε
|[x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]-L|<ε
即lim(n->∞) [x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]=L
由lim(n->∞) yn=+∞,以及x(N+1)和y(N+1)都是有限数,可得:
lim(n->∞) [x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]
=lim(n->∞) [x(n+1)/y(n+1)-0]/(1-0)
=lim(n->∞) x(n+1)/y(n+1)
=L
即lim(n->∞) xn/yn=L=lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]
(2)令xn=n*1^p+(n-1)*3^p+...+1*(2n-1)^p,yn=1^(p+1)+2^(p+1)+...+n^(p+1)
则x(n+1)-xn=(n+1)*1^p+n*3^p+...+1*(2n+1)^p-n*1^p-(n-1)*3^p-...-1*(2n-1)^p
=1^p+3^p+...+(2n+1)^p
y(n+1)-yn=1^(p+1)+2^(p+1)+...+(n+1)^(p+1)-1^(p+1)-2^(p+1)-...-n^(p+1)
=(n+1)^(p+1)
令an=x(n+1)-xn,bn=y(n+1)-yn
a(n+1)-an=(2n+3)^p
b(n+1)-bn=(n+2)^(p+1)-(n+1)^(p+1)
因为b(n+1)>bn,且lim(n->∞)bn=+∞
且lim(n->∞) [a(n+1)-an]/[b(n+1)-bn]
=lim(n->∞) [(2n+3)^p]/[(n+2)^(p+1)-(n+1)^(p+1)]
=lim(n->∞) [(2n+3)^p]/{[(n+1)^(p+1)]*{[1+1/(n+1)]^(p+1)-1}}
=lim(n->∞) [(2n+3)^p]/{[(n+1)^(p+1)]*(p+1)/(n+1)}
=[1/(p+1)]*lim(n->∞) [(2n+3)/(n+1)]^p
=(2^p)/(p+1)
所以根据(1)之结论,有
lim(n->∞) an/bn=lim(n->∞) [a(n+1)-an]/[b(n+1)-bn]=(2^p)/(p+1)
即lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]=lim(n->∞) an/bn=(2^p)/(p+1)
因为y(n+1)>yn,且lim(n->∞)yn=+∞
所以又根据(1)之结论,有
原式=lim(n->∞) xn/yn=lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]=(2^p)/(p+1)
根据极限定义,∀ε>0,∃正整数N1,使当n>N1时,有|[x(n+1)-xn]/[y(n+1)-yn]-L|<ε
即L-ε<[x(n+1)-xn]/[y(n+1)-yn]<L+ε
因为y(n+1)-yn>0,所以(L-ε)[y(n+1)-yn]<[x(n+1)-xn]<(L+ε)[y(n+1)-yn]
因为lim(n->∞) yn=+∞,所以∃正整数N2,使当n>N2时,有yn>ε>0
取N=max{N1,N2},使当n>N时,有
(L-ε)[y(N+2)-y(N+1)]<[x(N+2)-x(N+1)]<(L+ε)[y(N+2)-y(N+1)]
(L-ε)[y(N+3)-y(N+2)]<[x(N+3)-x(N+2)]<(L+ε)[y(N+3)-y(N+2)]
......
(L-ε)[y(n+1)-yn]<[x(n+1)-xn]<(L+ε)[y(n+1)-yn]
上述(n-N)个式子相加,得:
(L-ε)[y(n+1)-y(N+1)]<[x(n+1)-x(N+1)]<(L+ε)[y(n+1)-y(N+1)]
因为y(n+1)>y(N+1),所以
L-ε<[x(n+1)-x(N+1)]/[y(n+1)-y(N+1)]<L+ε
因为y(n+1)>0,所以分子分母同除以y(n+1),得:
L-ε<[x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]<L+ε
|[x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]-L|<ε
即lim(n->∞) [x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]=L
由lim(n->∞) yn=+∞,以及x(N+1)和y(N+1)都是有限数,可得:
lim(n->∞) [x(n+1)/y(n+1)-x(N+1)/y(n+1)]/[1-y(N+1)/y(n+1)]
=lim(n->∞) [x(n+1)/y(n+1)-0]/(1-0)
=lim(n->∞) x(n+1)/y(n+1)
=L
即lim(n->∞) xn/yn=L=lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]
(2)令xn=n*1^p+(n-1)*3^p+...+1*(2n-1)^p,yn=1^(p+1)+2^(p+1)+...+n^(p+1)
则x(n+1)-xn=(n+1)*1^p+n*3^p+...+1*(2n+1)^p-n*1^p-(n-1)*3^p-...-1*(2n-1)^p
=1^p+3^p+...+(2n+1)^p
y(n+1)-yn=1^(p+1)+2^(p+1)+...+(n+1)^(p+1)-1^(p+1)-2^(p+1)-...-n^(p+1)
=(n+1)^(p+1)
令an=x(n+1)-xn,bn=y(n+1)-yn
a(n+1)-an=(2n+3)^p
b(n+1)-bn=(n+2)^(p+1)-(n+1)^(p+1)
因为b(n+1)>bn,且lim(n->∞)bn=+∞
且lim(n->∞) [a(n+1)-an]/[b(n+1)-bn]
=lim(n->∞) [(2n+3)^p]/[(n+2)^(p+1)-(n+1)^(p+1)]
=lim(n->∞) [(2n+3)^p]/{[(n+1)^(p+1)]*{[1+1/(n+1)]^(p+1)-1}}
=lim(n->∞) [(2n+3)^p]/{[(n+1)^(p+1)]*(p+1)/(n+1)}
=[1/(p+1)]*lim(n->∞) [(2n+3)/(n+1)]^p
=(2^p)/(p+1)
所以根据(1)之结论,有
lim(n->∞) an/bn=lim(n->∞) [a(n+1)-an]/[b(n+1)-bn]=(2^p)/(p+1)
即lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]=lim(n->∞) an/bn=(2^p)/(p+1)
因为y(n+1)>yn,且lim(n->∞)yn=+∞
所以又根据(1)之结论,有
原式=lim(n->∞) xn/yn=lim(n->∞) [x(n+1)-xn]/[y(n+1)-yn]=(2^p)/(p+1)
哎呦互动
2024-07-12 广告
2024-07-12 广告
当您光临我们的门店或参与活动时,只需轻松打开微信,对准我们提供的二维码一扫,即可参与激动人心的抽奖环节。奖品丰富多样,从精美小礼品到超值优惠券,应有尽有。我们致力于为您带来便捷、有趣的互动体验,让每一次扫码都成为一次惊喜的开启。感谢您的支持...
点击进入详情页
本回答由哎呦互动提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询