微分方程的特解与通解
1个回答
展开全部
y''+3y'+2y=3e^(-2x)
(1)先求齐次方程的通解
特征方程
r²+3r+2=0
(r+2)(r+1)=0
得r=-1或r=-2
所以齐次通解Y=C1e^(-x) + C2e^(-2x)
(2)再求非齐次的特解
根据已知λ=-2是特征方程的单根,所以k=1
设y*=x ae^(-2x)
y*'=ae^(-2x)-2xae^(-2x)
y*''=-2ae^(-2x)-2ae^(-2x)+4xae^(-2x)
代入原方程得
-2ae^(-2x)-2ae^(-2x)+4xae^(-2x)+3[ae^(-2x)-2xae^(-2x)]+2xae^(-2x)=3e^(-2x)
-ae^(-2x)=3e^(-2x)
得a=-3
所以y*=-3xe^(-2x)
综上,该非齐次的通解为
y=Y+y*=C1e^(-x) + C2e^(-2x) -3xe^(-2x)
火丰科技
2024-11-13 广告
2024-11-13 广告
致力于从事惯性测量、卫星导航等产品的研发、生产的高新技术企业。公司旗下投资多条自动化生产线分别分布于西安、深圳、珠海等地,其中包括光纤陀螺、MEMS惯导、石英加速度计、电子对抗通信产品生产线,拥有中国先进的惯性导航产品及电子对抗产品生产条件...
点击进入详情页
本回答由火丰科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询