怎么证明一个三角形是等腰三角形
展开全部
等腰三角形(isosceles triangle),是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
中文名
等腰三角形
外文名
Isosceles triangle
分类
数学
属于
几何
特点
两边相等两角相等
初中数学中考冲刺复习课程
共80集
0热度
小升初名校冲刺数学必考100题
共100集
1098热度
限时折扣
人教版初二数学上册同步视频课
共90集
4392热度
快速
导航
分类
性质
判定的方式
证明
定义
至少有两边相等的三角形叫做等腰三角形。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形
分类
等腰直角三角形
1、定义
有一个角是直角的等腰三角形,叫做等腰直角三角形。它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。
2、关系
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,等边对等角,等角对等边。
3、四条特殊的线段:角平分线,中线,高,中位线。
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。
(2)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等。
(3)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的两倍。
(4)三角形的三条高或它们的延长线的交点叫做三角形的垂心。
(5)三角形的中位线平行于第三边且等于第三边的二分之一。
(6)三角形斜边上的高等于斜边的一半。
备注:
①三角形的内心、重心都在三角形的内部 .
②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上(直角三角形的垂心为直角顶点,外心为斜边中点)。
④锐角三角形垂心、外心在三角形内部。
等边三角形
1、定义
所谓的等边三角形,是三边都相等的等腰三角形。
2、性质
(1)每个角都为60°,三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,大边对大角,大角对大边。
性质
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方[1] 。
判定的方式
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
显然,以上三条定理是“三线合一”的逆定理。
有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
证明
有关问题的证明
已知:△ABC中,∠A=60°,且AB+AC=a,
求证:当三角形的周长最短时,三角形是等边三角形。
证明:AC=a-AB
根据余弦定理
BC2=AB2+BC2-2AB*BC*cosA
BC2=AB2+BC2-AB*BC=AB2+(a-AB)2-AB*(a-AB)=3AB2-3a*AB+a2=3(AB-a/2)2+a2/4
所以当AB=a/2时,BC=a/2最小
AC=a-a/2=a/2
这时,周长为AB+AC+BC=a+BC=a+a/2=3a/2最短
AB=AC=BC=a/2
所以当周长最短时的三角形是正三角形。
中文名
等腰三角形
外文名
Isosceles triangle
分类
数学
属于
几何
特点
两边相等两角相等
初中数学中考冲刺复习课程
共80集
0热度
小升初名校冲刺数学必考100题
共100集
1098热度
限时折扣
人教版初二数学上册同步视频课
共90集
4392热度
快速
导航
分类
性质
判定的方式
证明
定义
至少有两边相等的三角形叫做等腰三角形。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形
分类
等腰直角三角形
1、定义
有一个角是直角的等腰三角形,叫做等腰直角三角形。它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。
2、关系
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,等边对等角,等角对等边。
3、四条特殊的线段:角平分线,中线,高,中位线。
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。
(2)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等。
(3)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的两倍。
(4)三角形的三条高或它们的延长线的交点叫做三角形的垂心。
(5)三角形的中位线平行于第三边且等于第三边的二分之一。
(6)三角形斜边上的高等于斜边的一半。
备注:
①三角形的内心、重心都在三角形的内部 .
②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上(直角三角形的垂心为直角顶点,外心为斜边中点)。
④锐角三角形垂心、外心在三角形内部。
等边三角形
1、定义
所谓的等边三角形,是三边都相等的等腰三角形。
2、性质
(1)每个角都为60°,三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,大边对大角,大角对大边。
性质
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方[1] 。
判定的方式
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
显然,以上三条定理是“三线合一”的逆定理。
有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
证明
有关问题的证明
已知:△ABC中,∠A=60°,且AB+AC=a,
求证:当三角形的周长最短时,三角形是等边三角形。
证明:AC=a-AB
根据余弦定理
BC2=AB2+BC2-2AB*BC*cosA
BC2=AB2+BC2-AB*BC=AB2+(a-AB)2-AB*(a-AB)=3AB2-3a*AB+a2=3(AB-a/2)2+a2/4
所以当AB=a/2时,BC=a/2最小
AC=a-a/2=a/2
这时,周长为AB+AC+BC=a+BC=a+a/2=3a/2最短
AB=AC=BC=a/2
所以当周长最短时的三角形是正三角形。
展开全部
有两条边相等就行了。望采纳~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2024-09-14 · 知道合伙人教育行家
wxsunhao
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:20073
获赞数:77228
国家级安全专家 省安全专家、职业健康专家 常州市安委会专家 质量、环境、职业健康安全审核员 教授级高级工
向TA提问 私信TA
关注
展开全部
证明一个三角形是等腰三角形通常的方法是设法证明这个三角形中有两边相等或者两个角度相等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、同一三角形中,有两条边相等的三角形是等腰三角形。
2、同一三角形中,若两角相等,则这两个角所对应边也相等(等角对等边)。
3、同一三角形中,若一个角的平分线与该角对边中线重合,则该三角形是等腰三角形,该角为顶角。
4、同一三角形中,若一个角的平分线与该角对边的高重合,则该三角形是等腰三角形,该角为顶角。
5、同一三角形中,若一条边上的中线与该边的高重合,则该三角形是等腰三角形,该边为底边。
6、同一三角形中,两条角平分线(或中线,或高)相等的三角形是等腰三角形。
2、同一三角形中,若两角相等,则这两个角所对应边也相等(等角对等边)。
3、同一三角形中,若一个角的平分线与该角对边中线重合,则该三角形是等腰三角形,该角为顶角。
4、同一三角形中,若一个角的平分线与该角对边的高重合,则该三角形是等腰三角形,该角为顶角。
5、同一三角形中,若一条边上的中线与该边的高重合,则该三角形是等腰三角形,该边为底边。
6、同一三角形中,两条角平分线(或中线,或高)相等的三角形是等腰三角形。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询