1个回答
展开全部
x->+∞
ln(1+1/x) ~ 1/x
---
lim(x->+∞) ∫(1->x) [ t^2.( e^(1/t) -1) - t ] dt/[ x^2.ln(1+1/x)]
=lim(x->+∞)∫(1->x) [ t^2.( e^(1/t) -1) - t ] dt/[ x^2.(1/x)]
=lim(x->+∞) ∫(1->x) [ t^2.( e^(1/t) -1) - t ] dt/ x (0/0)
分子,分母分别求导
= lim(x->+∞) [ x^2.( e^(1/x) -1) - x ]
ln(1+1/x) ~ 1/x
---
lim(x->+∞) ∫(1->x) [ t^2.( e^(1/t) -1) - t ] dt/[ x^2.ln(1+1/x)]
=lim(x->+∞)∫(1->x) [ t^2.( e^(1/t) -1) - t ] dt/[ x^2.(1/x)]
=lim(x->+∞) ∫(1->x) [ t^2.( e^(1/t) -1) - t ] dt/ x (0/0)
分子,分母分别求导
= lim(x->+∞) [ x^2.( e^(1/x) -1) - x ]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询