反函数定义域
展开全部
找到一个单调区间,此区间即是烦函数的定义域。
把函数看作方程: y=f(x)
解方程,求出x用y标识的表达式,x=f^(-1)(y)
将x,y互换即得反函数表达式: y=f^(-1)(x)
例如:求 y=3x+5的反函数,函数在(-∞, +∞)内单调,值域为:(-∞, +∞)
∴ 所以反函数的定义域为:(-∞, +∞),值域为:(-∞, +∞)
由 y=3x+5 解得:x=1/3*y-5/3
∴ 反函数为: y=1/3*x-5/3 x∈(-∞, +∞)
例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。
展开全部
反函数定义域?实际上,求函数定义域与求它的反函数定义域,从方法上讲是一样的。因为反函数也是“函数“。如果已知,或者可以求得原函数值域,那么反函数的定义域就是原函数的值域。因为两个互为反函数的函数定义域与值域互换。否则,直接求反函数定义域。解:
因为:-1≤sint≤1
所以:-1≤(x-1)/2≤1
有:-2≤x-1≤2
因此:-1≤x≤3
所求定义域为x∈[-1,3]。反函数定义域和原函数值域相同
反函数值域和原函数定义域相同
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
因为:-1≤sint≤1
所以:-1≤(x-1)/2≤1
有:-2≤x-1≤2
因此:-1≤x≤3
所求定义域为x∈[-1,3]。反函数定义域和原函数值域相同
反函数值域和原函数定义域相同
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
因为:-1≤sint≤1
所以:-1≤(x-1)/2≤1
有:-2≤x-1≤2
因此:-1≤x≤3
所求定义域为x∈[-1,3]。
因为:-1≤sint≤1
所以:-1≤(x-1)/2≤1
有:-2≤x-1≤2
因此:-1≤x≤3
所求定义域为x∈[-1,3]。
更多追问追答
追问
你告诉我它的反函数是多少
sim[(x-1)/2]的反函数是什么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得f(x)=y,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为
由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f的值域和定义域,并且f的反函数就是f,也就是说,函数f和f互为反函数,即:
反函数与原函数的复合函数等于x,即:
习惯上我们用x来表示自变量,用y来表示因变量,于是函数y=f(x)的反函数通常写成
。
例如,函数
的反函数是
。
相对于反函数y=f(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f(b),即点(b,a)在反函数y=f(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f关于y=x对称。
于是我们可以知道,如果两个函数的图像关于y=x对称,那么这两个函数互为反函数。这也可以看做是反函数的一个几何定义。
在微积分里,f(x)是用来指f的n次微分的。
若一函数有反函数,此函数便称为可逆的(invertible)。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得f(x)=y,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为
由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f的值域和定义域,并且f的反函数就是f,也就是说,函数f和f互为反函数,即:
反函数与原函数的复合函数等于x,即:
习惯上我们用x来表示自变量,用y来表示因变量,于是函数y=f(x)的反函数通常写成
。
例如,函数
的反函数是
。
相对于反函数y=f(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f(b),即点(b,a)在反函数y=f(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f关于y=x对称。
于是我们可以知道,如果两个函数的图像关于y=x对称,那么这两个函数互为反函数。这也可以看做是反函数的一个几何定义。
在微积分里,f(x)是用来指f的n次微分的。
若一函数有反函数,此函数便称为可逆的(invertible)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |