y的二阶导函数等于y的一阶导函数的平方加一,求解此微分方程通解 50

y的二阶导函数等于y的一阶导函数的平方加一,求解此微分方程通解有些疑问希望能追问,谢谢!... y的二阶导函数等于y的一阶导函数的平方加一,求解此微分方程通解有些疑问希望能追问,谢谢! 展开
 我来答
小耳朵爱聊车
高粉答主

2021-08-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:7378
采纳率:100%
帮助的人:293万
展开全部

由题意知y''=1+(y')^2。

令y'=p,则y''=p'=dp/dx,于是原方程可以写成:p'=1+p^2,所以dp/(1+p^2)=dx。

对等式两端同时积分得到:arctanp=x+c1(c1为常数),即p=tan(x+c1),y'=tan(x+c1),所以dy=tan(x+c1)dx,再对等式两端同时积分得到微分方程的通解为:y=-ln|cos(x+c1)|+c2(c1、c2均为常数)

一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性定理:

设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:

(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;

(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;

(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。

如果一个函数的定义域为全体实数,即函数在实数域上都有定义,要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续。

我爱学习112
高粉答主

2021-01-05 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:151万
展开全部

由题意知y''=1+(y')^2

令y'=p,则y''=p'=dp/dx

于是原方程可以写成:p'=1+p^2

所以dp/(1+p^2)=dx

对等式两端同时积分得到:arctan p=x+c1(c1为常数)

即p=tan(x+c1),y'=tan(x+c1),

所以dy=tan(x+c1) dx,

再对等式两端同时积分得到微分方程的通解为:

y= -ln |cos(x+c1)|+c2 (c1、c2均为常数)

扩展资料

通解的求法:

求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shawhom
高粉答主

2017-12-02 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11601 获赞数:27924

向TA提问 私信TA
展开全部
y''=y'^2+1
令y'=p, 即dy/dx=p
则y''=dp/dx=dp/dy*dy/dx=pdp/dy
带入:
pdp/dy=p^2+1
移项后两边积分
p/(p^2+1)dp=dy
1/2ln(p^2+1)=y+c
则:p^2+1=e^(2y+2c)
则p=√(e^(2y+2c)-1)
即:dy/dx=√(e^(2y+2c)-1)
移项后两边积分,
dy/√(e^(2y+2c)-1)=dx
令 √(e^(2y+2c)-1)=t ,则y=1/2ln[(t^2+1)/e^(2c)]
dy=1/2e^(2c)/(t^2+1)*2tdt=e^(2c)t/(t^2+1)dt
带入:
∫e^(2c)t/(t^2+1)*1/tdt=x
=∫e^(2c)/(t^2+1)dt=x
e^(2c)arctant+c2=x
再带回t得:
x=e^(2c)arctan√(e^(2y+2c)-1)+c2
令e^(2c)=c1,则为
x=c1*arctan√(c1*e^(2y)-1)+c2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
玉杵捣药
高粉答主

2017-12-02 · 醉心答题,欢迎关注
知道顶级答主
回答量:6.4万
采纳率:72%
帮助的人:2.5亿
展开全部

因为这里书写不便,故将我的答案做成图像贴于下方,谨供楼主参考(若图像显示过小,点击图片可放大)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式