f(x)在x0处极限存在,则f(x)在x0处有定义。这句话为什么正确,有什么例子来证明吗?
3个回答
展开全部
f(x)在x0处极限存在,则f(x)在x0处有定义。这句话正确的原因是:有定义只是说函数在x=x0处有意义,f(x0)有值。
有极限在有定义的基础上,如果x从某一方向(正向或负向)无限接近x0,极限存在,那么函数在x=x0处一侧有极限。
连续在有极限的基础上,如果x=x0处两侧的极限存在且相等,那么函数在x=x0处连续。
扩展资料:
在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。
换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询