高数,定积分,求解答
展开全部
let
x=sinu
dx=cosu du
x=0, u=0
x=1, u=π/2
∫(0->1) (1-x^2)^(3/2) dx
=∫(0->π/2) (cosu)^4 du
=(1/4) ∫(0->π/2) (1+cos2u)^2 du
=(1/4) ∫(0->π/2) [1+2cos2u + (cos2u)^2] du
=(1/8) ∫(0->π/2) ( 3+4cos2u + cos4u ) du
=(1/8) [ 3u +2sin2u + (1/4)sin4u]|(0->π/2)
=3π/16
x=sinu
dx=cosu du
x=0, u=0
x=1, u=π/2
∫(0->1) (1-x^2)^(3/2) dx
=∫(0->π/2) (cosu)^4 du
=(1/4) ∫(0->π/2) (1+cos2u)^2 du
=(1/4) ∫(0->π/2) [1+2cos2u + (cos2u)^2] du
=(1/8) ∫(0->π/2) ( 3+4cos2u + cos4u ) du
=(1/8) [ 3u +2sin2u + (1/4)sin4u]|(0->π/2)
=3π/16
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询