dy是趋近于0的东西,可以理du解为一小段y。但是是不能求出来的,dy/dx是斜率,也是增加率,它表示增加多少的x,就增加dy/dx倍的y。当△x非常小的时候,可以近似认为是直线,△y≈△x*(dy/dx)。
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)。
那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
扩展资料
商的导数公式:
(u/v)'=[u*v^(-1)]'
=u' * [v^(-1)] +[v^(-1)]' * u
= u' * [v^(-1)] + (-1)v^(-2)*v' * u
=u'/v - u*v'/(v^2)
通分,易得
(u/v)=(u'v-uv')/v²
常用导数公式:
1、c'=0
2、x^m=mx^(m-1)
3、sinx'=cosx,cosx'=-sinx,tanx'=sec^2x
4、a^x'=a^xlna,e^x'=e^x
5、lnx'=1/x,log(a,x)'=1/(xlna)
6、(f±g)'=f'±g'
7、(fg)'=f'g+fg'
广告 您可能关注的内容 |