![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
展开全部
设x1<x2<=-b/2a,
则
f(x2)-f(x1)
=a(x2^2-x1^2)+b(x2-x1)
=(x2-x1)(ax2+ax1+b)
因为x1<x2<=-b/2a,
x1+x2<2*(-b/2a)=-b/a
又a<0,
a(x1+x2)>-b
ax2+ax1+b>0
而x2-x1>0
所以:f(x2)-f(x1)>0
得证
则
f(x2)-f(x1)
=a(x2^2-x1^2)+b(x2-x1)
=(x2-x1)(ax2+ax1+b)
因为x1<x2<=-b/2a,
x1+x2<2*(-b/2a)=-b/a
又a<0,
a(x1+x2)>-b
ax2+ax1+b>0
而x2-x1>0
所以:f(x2)-f(x1)>0
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询