高数概率论。为什么不相关也能使得EXY=EXEY不需要“独立”?

 我来答
你的职场小助理
2021-08-09 · TA获得超过3775个赞
知道小有建树答主
回答量:544
采纳率:100%
帮助的人:8.7万
展开全部

解析如下:

独立只是E(XY)=EXEY的一个充分条件,但不是必要条件。由于cov(X,Y)=E(X-EX)(Y-EY)=E(XY)-EXEY,所以不相关<=>cov(X,Y)=0<=>E(XY)=EXEY。

相关->不独立。

独立->不相关。

是一对逆反命题。

直接说不相关->独立是不行的。

起源

概率论是研究随机现象数量规律的数学分支,是一门研究事情发生的可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano)开始研究掷骰子等赌博中的一些简单问题。

概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

我爱学习112
高粉答主

2021-01-25 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:156万
展开全部

独立只是E(XY)=EXEY的一个充分条件,但不是必要条件。由于cov(X,Y)=E(X-EX)(Y-EY)=E(XY)-EXEY,所以不相关<=>cov(X,Y)=0<=>E(XY)=EXEY。

相关->不独立

独立->不相关

是一对逆反命题

直接说不相关->独立是不行的

扩展资料

假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元。

若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润,并求出最大利润的期望值。

由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。

因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。

参考资料来源:百度百科-独立

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-12-28 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

独立只是E(XY)=EXEY的一个充分条件,但不是必要条件。由于cov(X,Y)=E(X-EX)(Y-EY)=E(XY)-EXEY,所以不相关<=>cov(X,Y)=0<=>E(XY)=EXEY。

相关->不独立

独立->不相关

是一对逆反命题

直接说不相关->独立是不行的

扩展资料:

要有两随机事件 A、B 。 A、B 发生的概率分别为 P(A) 和 P(B) , AB 事件同时发生的概率为 P(AB) 若 P(A)×P(B)=P(AB) ,则 A 与 B 相互独立。事件 A 发生的概率不影响事件 B 发生的概率,反应的是概率运算上的关系。

0≤P(A)≤1

0≤P(B)≤1

0≤P(AB)≤1

设X、Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。

参考资料来源:百度百科-独立

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hxzhu66
高粉答主

2018-07-20 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.1亿
展开全部
独立只是E(XY)=EXEY的一个充分条件,但不是必要条件。由于cov(X,Y)=E(X-EX)(Y-EY)=E(XY)-EXEY,所以不相关<=>cov(X,Y)=0<=>E(XY)=EXEY。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式