1个回答
展开全部
用倒代换.
令x=1/t,则dx=-dt/t²,
原积分=-∫t^8/(t^2+1)dt=-∫t^6dt+∫t^6/(1+t^2)dt
=-∫t^6dt+∫t^4dt-∫t^4/(1+t^2)dt
=-∫t^6dt+∫t^4dt-∫t^2dt+∫t^2/(1+t^2)dt
=-∫t^6dt+∫t^4dt-∫t^2dt+∫dt-∫dt/(1+t²)
=-1/7t^7+1/5t^5-1/3t^3+t-arctant+C
=-1/(7x^7)+1/(5x^5)-1/(3x^3)+1/x-arctan(1/x)+C
令x=1/t,则dx=-dt/t²,
原积分=-∫t^8/(t^2+1)dt=-∫t^6dt+∫t^6/(1+t^2)dt
=-∫t^6dt+∫t^4dt-∫t^4/(1+t^2)dt
=-∫t^6dt+∫t^4dt-∫t^2dt+∫t^2/(1+t^2)dt
=-∫t^6dt+∫t^4dt-∫t^2dt+∫dt-∫dt/(1+t²)
=-1/7t^7+1/5t^5-1/3t^3+t-arctant+C
=-1/(7x^7)+1/(5x^5)-1/(3x^3)+1/x-arctan(1/x)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询