请问:怎样用maple求二元函数的极值? 200
先求驻点
f:=(x,y)->x^3-y^3+3*x^2+3*y^2-9*x;
fx:=D[1](f)(x,y);
fy:=D[2](f)(x,y);
solve({D[1](f)(x,y)=0,D[2](f)(x,y)=0},[x,y]);
再求A,B,C
f:=(x,y)->x^3-y^3+3*x^2+3*y^2-9*x;
A:=D[1,1](f)(x,y);
B:=D[1,2](f)(x,y);
C:=D[2,2](f)(x,y);
判别极值:
第一个驻点:
f:=(x,y)->x^3-y^3+3*x^2+3*y^2-9*x;
x0:=1:y0:=0:
A:=D[1,1](f)(x0,y0);
B:=D[1,2](f)(x0,y0);
C:=D[2,2](f)(x0,y0);
Delta:=A*C-B^2;
f(x0,y0);
第二个驻点:
f:=(x,y)->x^3-y^3+3*x^2+3*y^2-9*x;
x0:=1:y0:=2:
A:=D[1,1](f)(x0,y0);
B:=D[1,2](f)(x0,y0);
C:=D[2,2](f)(x0,y0);
Delta:=A*C-B^2;
f(x0,y0);
第三个驻点:
f:=(x,y)->x^3-y^3+3*x^2+3*y^2-9*x;
x0:=-3:y0:=0:
A:=D[1,1](f)(x0,y0);
B:=D[1,2](f)(x0,y0);
C:=D[2,2](f)(x0,y0);
Delta:=A*C-B^2;
f(x0,y0);
第四个驻点:
f:=(x,y)->x^3-y^3+3*x^2+3*y^2-9*x;
x0:=-3:y0:=2:
A:=D[1,1](f)(x0,y0);
B:=D[1,2](f)(x0,y0);
C:=D[2,2](f)(x0,y0);
Delta:=A*C-B^2;
f(x0,y0);
函数的图形:
函数的等值线: