考研数学

考研数学题78... 考研数学 题78 展开
 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
丹钓的升过
2018-03-19 · TA获得超过1206个赞
知道小有建树答主
回答量:667
采纳率:78%
帮助的人:101万
展开全部
当x→0,(cosnx)^(1/n) 1-(n/2)*x^2 (等价无穷小)
这是因为,lim(x→0) cosnx/[1-(n/2)*x^2]^n,应用洛必达法则,上下同时求导,得
上式 = lim(x→0)(-nsinnx)/[n*[(1-(n/2)*x^2)^(n-1)]*(-n*x) = lim(x→0)sinnx/nx = 1
于是
所求极限的分子可等价于
1-cosx(cos2x)^(1/2)(cos3x)^(1/3)...(cosnx)^(1/n)
1-(1-(1/2)*x^2)*(1-(2/2)*x^2)*...*(1-(n/2)*x^n) 展开
1-(1-(1/2+2/2+3/2+...+n/2)*x^2 + o(x^4)) (1/2+2/2+3/2+...+n/2)*x^2 - o(x^4)
因此所求极限=(1/2+2/2+3/2+...+n/2)=(n+1)*n/2/2 = n*(n+1)/4
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式