下面的题怎么解答?
如图,在三角形ABC中,AB=AC,D是AB上一点,DE垂直BC,E是垂足,ED的延长线交CA的延长线于点F,求证:AD=AF...
如图,在三角形ABC中,AB=AC,D是AB上一点,DE垂直BC,E是垂足,ED的延长线交CA的延长线于点F,求证:AD=AF
展开
展开全部
证明:∵AB=AC
∴∠B=∠C
∵DE⊥BC于点E且交线CA延长线于点F
∴△FCE和三角形DEB是RT△
∴∠CEF=∠FEB=90°
∵在△CEF中,∠C+∠F=90°
在△DEB中,∠EDB+∠B=90°
∠ADF=EDB
∠B=∠C
∴∠F=∠ADF
∴AD=AF
证明:∵AB=AC
∴∠B=∠C
∵DE⊥BC于点E且交线CA延长线于点F
∴△FCE和三角形DEB是RT△
∴∠CEF=∠FEB=90°
∵在△CEF中,∠C+∠F=90°
在△DEB中,∠EDB+∠B=90°
∠ADF=EDB
∠B=∠C
∴∠F=∠ADF
∴AD=AF
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询