求第8题详细解题过程
展开全部
∫dx/(x^2+9)^2
令x=3tan(u),则dx=3sec^2(u)du,u=arctan(x/3)
上式=∫3sec^2(u)du/(9tan^2(u)+9)^2
=∫3sec^2(u)du/81sec^4(u)
=1/27∫du/sec^2(u)=1/27∫cos^2(u)du=1/27∫1/2cos(2u)+1/2du
=1/27*[1/2*u+1/4sin(2u)]+C
=1/54*[u+sin(u)cos(u)]+C
=1/54*[arctan(x/3)+3x/(x^2+9)+C
令x=3tan(u),则dx=3sec^2(u)du,u=arctan(x/3)
上式=∫3sec^2(u)du/(9tan^2(u)+9)^2
=∫3sec^2(u)du/81sec^4(u)
=1/27∫du/sec^2(u)=1/27∫cos^2(u)du=1/27∫1/2cos(2u)+1/2du
=1/27*[1/2*u+1/4sin(2u)]+C
=1/54*[u+sin(u)cos(u)]+C
=1/54*[arctan(x/3)+3x/(x^2+9)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询