这是高一的数学,请师兄,师姐帮忙
2个回答
展开全部
解:
根据两角和公式
sin(A-B)
=
sinAcosB-cosAsinB
,得:
a=(1/2)cos6°-(√3/2)sin6°
=sin30°cos6°-cos30°sin6°
=sin(30°-6°)
=sin24°
根据万能公式
sinA=[2tan(A/2)]/[1+(tanA/2)^2]
,得:
b=2tan13°/[1+(tan13°)^2]
=sin(2*13°)
=sin26°
根据半角公式
sin(A/2)=±√[(1-cosA)/2]
,得:
c=√[(1-cos50°)/2]
=sin(50°/2)
=sin25°
故:b=sin26°>c=sin25°>a
=sin24°
说明:若
b=2tan13°/(1+tan13°)^2
据万能公式,得:1/b=1/sin26°+1
则:
b=1+sin26°/sin26°
给采纳,谢谢
根据两角和公式
sin(A-B)
=
sinAcosB-cosAsinB
,得:
a=(1/2)cos6°-(√3/2)sin6°
=sin30°cos6°-cos30°sin6°
=sin(30°-6°)
=sin24°
根据万能公式
sinA=[2tan(A/2)]/[1+(tanA/2)^2]
,得:
b=2tan13°/[1+(tan13°)^2]
=sin(2*13°)
=sin26°
根据半角公式
sin(A/2)=±√[(1-cosA)/2]
,得:
c=√[(1-cos50°)/2]
=sin(50°/2)
=sin25°
故:b=sin26°>c=sin25°>a
=sin24°
说明:若
b=2tan13°/(1+tan13°)^2
据万能公式,得:1/b=1/sin26°+1
则:
b=1+sin26°/sin26°
给采纳,谢谢
展开全部
解:
根据两角和公式
sin(A-B)
=
sinAcosB-cosAsinB
,得:
a=(1/2)cos6°-(√3/2)sin6°
=sin30°cos6°-cos30°sin6°
=sin(30°-6°)
=sin24°
根据万能公式
sinA=[2tan(A/2)]/[1+(tanA/2)^2]
,得:
b=2tan13°/[1+(tan13°)^2]
=sin(2*13°)
=sin26°
根据半角公式
sin(A/2)=±√[(1-cosA)/2]
,得:
c=√[(1-cos50°)/2]
=sin(50°/2)
=sin25°
故:b=sin26°>c=sin25°>a
=sin24°
说明:若
b=2tan13°/(1+tan13°)^2
据万能公式,得:1/b=1/sin26°+1
则:
b=1+sin26°/sin26°
根据两角和公式
sin(A-B)
=
sinAcosB-cosAsinB
,得:
a=(1/2)cos6°-(√3/2)sin6°
=sin30°cos6°-cos30°sin6°
=sin(30°-6°)
=sin24°
根据万能公式
sinA=[2tan(A/2)]/[1+(tanA/2)^2]
,得:
b=2tan13°/[1+(tan13°)^2]
=sin(2*13°)
=sin26°
根据半角公式
sin(A/2)=±√[(1-cosA)/2]
,得:
c=√[(1-cos50°)/2]
=sin(50°/2)
=sin25°
故:b=sin26°>c=sin25°>a
=sin24°
说明:若
b=2tan13°/(1+tan13°)^2
据万能公式,得:1/b=1/sin26°+1
则:
b=1+sin26°/sin26°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询