判断级数∑(n=1,∞)n^(n+1/n)/(n+1/n)^n的敛散性?
2个回答
展开全部
limit{n->∞}(n^(n+1/n))/((n+1/n)^n)
=limit{n->∞}[n/(n+1/n)]^n*n*(1/n)
=limit{n->∞}[1/(1+1/n^2)]^n*limit{n->∞}n*(1/n)
=1/limit{n->∞}ln[n*ln(1+1/n^2)]*limit{n->∞}ln[(1/n)*lnn]
=1/limit{n->∞}ln(n*1/n^2)*limit{n->∞}ln(1/n)
=1/ln(0)*ln(0)
=1 不等于0
级数发散
=limit{n->∞}[n/(n+1/n)]^n*n*(1/n)
=limit{n->∞}[1/(1+1/n^2)]^n*limit{n->∞}n*(1/n)
=1/limit{n->∞}ln[n*ln(1+1/n^2)]*limit{n->∞}ln[(1/n)*lnn]
=1/limit{n->∞}ln(n*1/n^2)*limit{n->∞}ln(1/n)
=1/ln(0)*ln(0)
=1 不等于0
级数发散
追问
n^1/n怎么变成ln(1/n×lnn)的?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |