正弦余弦定理题目求解,要过程,谢谢!!
展开全部
1、
2abcosC(2sinA-sinB)=2accosBsinB
bcosC(2sinA-sinB)=csinBcosB
sinBcosC(2sinA-sinB)=sinCsinBcosB
cosC(2sinA-sinB)=sinCcosB
2sinAcosC-sinBcosC=sinCcosB
2sinAcosC=sinBcosC+sinCcosB
2sinAcosC=sin(B+C)
2sinAcosC=sinA
2cosC=1
cosC=0.5
0<C<π
C=π/3
2、 设角ADC=θ 则 设角BDC=π-θ
AC^2=CD^2+AD^2-2CD*ADcosθ =6-4*2^2^0.5cosθ
BC^2=CD^2+BD^2-2CD*BDcos(π-θ) =6-4*2^2^0.5cosθ(π-θ) =6+4*2^2^0.5cosθ
AC^2+BC^2=12
AB^2=AC^2+BC^2-2AC*BCcosπ/3
8=12-AC*BC
AC*BC=4
S=0.5*AC*BC*sin角ACB =0.5*4*cosπ/3=根号3
2abcosC(2sinA-sinB)=2accosBsinB
bcosC(2sinA-sinB)=csinBcosB
sinBcosC(2sinA-sinB)=sinCsinBcosB
cosC(2sinA-sinB)=sinCcosB
2sinAcosC-sinBcosC=sinCcosB
2sinAcosC=sinBcosC+sinCcosB
2sinAcosC=sin(B+C)
2sinAcosC=sinA
2cosC=1
cosC=0.5
0<C<π
C=π/3
2、 设角ADC=θ 则 设角BDC=π-θ
AC^2=CD^2+AD^2-2CD*ADcosθ =6-4*2^2^0.5cosθ
BC^2=CD^2+BD^2-2CD*BDcos(π-θ) =6-4*2^2^0.5cosθ(π-θ) =6+4*2^2^0.5cosθ
AC^2+BC^2=12
AB^2=AC^2+BC^2-2AC*BCcosπ/3
8=12-AC*BC
AC*BC=4
S=0.5*AC*BC*sin角ACB =0.5*4*cosπ/3=根号3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询