函数y=f(x)在点可导,则曲线在处的切线存在。正确吗?
函数y=f(x)在点可导,则曲线在处的切线存在,这句话是错误的。
可以垂直于x轴是不可导的,如抛物线(开口是向x轴的)x=y^2,它在点x=0不可导,但是在点x=0处切线是存在的,切线为x=0。
如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
函数y=f(x)在点可导,则曲线在处的切线存在,这句话是错误的。
可以垂直于x轴是不可导的,如抛物线(开口是向x轴的)x=y^2,它在点x=0不可导,但是在点x=0处切线是存在的,切线为x=0。
如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。
扩展资料:
从函数的角度看,解不等式的方法就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围的一个过程;
从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。当k>0时,不等式kx+b>0的解为:x>- b/k,不等式kx+b<0的解为:x<- b/k;当k<0的解为:不等式kx+b>0的解为:x<- b/k,不等式kx+b<0的解为:x>- b/k。
则这曲线如: y=√(2x-x²),0≤x≤2;y=-√(6x-x²-8),2<x≤4.
y=f(x)在[0,4]上处处有切线,在x=2处有切线x=2,但是y=f(x)在x=2处却不可导。